Serum albumin binding of structurally diverse neutral organic compounds: data and models.
نویسندگان
چکیده
Binding to serum albumin has a strong influence on freely dissolved, unbound concentrations of chemicals in vivo and in vitro. For neutral organic solutes, previous studies have suggested a log-log correlation between the albumin-water partition coefficient and the octanol-water partition coefficient (K(ow)) and postulated highly nonspecific binding that is mechanistically analogous to dissolution into solvents. These relationships and concepts were further explored in this study. Bovine serum albumin (BSA)-water partition coefficients (K(BSA/w)) were measured for 83 structurally diverse neutral organic chemicals in consistent experimental conditions. The correlation between log K(BSA/w) and log K(ow) was moderate, with R(2) = 0.76 and SD = 0.43. The log K(BSA/w) of low-polarity compounds including a series of chlorobenzenes and polycyclic aromatic hydrocarbons increased with log K(ow) linearly up to log K(ow) = 4-5, but then the linear relationship apparently broke off, and the increase became gradual. The fitting of polyparameter linear free energy relationship models with five solute descriptors was just comparable to that of the log K(ow) model (R(2) = 0.78-0.79, SD = 0.41-0.42); the relatively high SD obtained suggests that solvent dissolution models are not capable of modeling albumin binding accurately. A size limitation of the binding site(s) of albumin is suggested as a possible reason for the high SD. An equilibrium distribution model indicates that serum albumin generally has high contributions to the binding in the serum of polar compounds and relatively small low-polarity compounds, whereas albumin binding for large low-polarity compounds is outcompeted by the strong partitioning into lipids due to low relative affinity of albumin for these compounds.
منابع مشابه
Equilibrium Sorption of Structurally Diverse Organic Ions to Bovine Serum Albumin.
Reliable partitioning data are essential for assessing the bioaccumulation potential and the toxicity of chemicals. In contrast to neutral organic chemicals, the partitioning behavior of ionogenic organic chemicals (IOCs) is still a black box for environmental scientists. Partitioning to serum albumin, the major protein in blood plasma, strongly influences the freely dissolved concentration of ...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملStudies of In-Vitro Amlodipine and Arsenic Displacement Interaction at Binding Sites of Bovine Serum Albumin
In this study, the binding of amlodipine (a Ca ++ channel Blocker) and arsenic (metalloid) to bovine serum albumin (BSA) was studied by equilibrium dialysis(ED) method in order to have an insight into their binding chemistry to BSA. Free amlodipine concentration was increased due to addition of arsenic which reduced the binding of the compounds to BSA. However, the free fraction was not increa...
متن کاملStudy of interaction between nicotinamide and human serum albumin using spectroscopic techniques and molecular docking simulation simulation
Human serum albumin is one of the most important blood proteins that has the ability to bind a wide range of compounds and different drugs. Hence, knowing how drugs bind to albumin is crucial to understand their pharmacokinetics and pharmacodynamic properties. The binding of drugs to protein affects the drug's excretion, distribution and interaction in the target tissues. Nicotinamide (NA) is a...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2011